Menu
🔎 🌎 FR Code classe 🔑 Connexion Abonnement

Fonction polynomiale (n≤2) HTML5

Résumé

Une fonction polynomiale du second degré de la variable x est une somme de 3 termes algébriques, l'un d'eux contient une puissance d'ordre 2 de x. 

Son expression générale s'écrit sous la forme : a.x2 + b.x + c,

a, b et c sont les paramètres de la fonction. c est l'ordonnée à l'origine de f(x) : f(0) = c.

  • Si a est non nul, la fonction est quadratique. Sa représentation graphique est une forme en U si a > 0 ou en U inversé si a < 0.  f(x) peut s'exprimer en fonction des coordonnées de son sommet (h,k), c'est la forme canonique : f(x) = a.(x - h)2 + k. Si f(x) coupe l'axe des abscisses, la fonction possède deux zéros z et z : f(z) = f(z) = 0. f(x) peut s'exprimer en fonction de ses zéros, c'est la forme factorisée : f(x) = a.(x - z). (x - z).
  • Si a est nul, la fonction est affine ou linéaire. Son expression devient : f(x) = b.x + c. Sa représentation graphique est une droite, b est la pente de la droite.

Cette animation permet de comprendre l'influence de chaque paramètre sur forme et l'expression de la fonction.

Objectifs d'apprentissage

  • Introduire la notion de fonction numérique.
  • Savoir caractériser une fonction quadratique et une fonction affine.
  • Comprendre l'influence des paramètres de la fonction sur sa représentation graphique.
  • Savoir interpréter la représentation graphique d'une fonction.
  • Savoir exprimer une fonction polynomiale du second degré sous différentes formes (générale, canonique, factorisée) à partir des coordonnées de certains points caractéristiques.